Undecidable Problem
   HOME

TheInfoList



OR:

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
and
computational complexity theory In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by ...
, an undecidable problem is a
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm wheth ...
for which it is proved to be impossible to construct an
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
that always leads to a correct yes-or-no answer. The
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a g ...
is an example: it can be proven that there is no algorithm that correctly determines whether arbitrary programs eventually halt when run.


Background

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs. Because of this, it is traditional to define the decision problem equivalently as the set of inputs for which the problem returns ''yes''. These inputs can be natural numbers, but also other values of some other kind, such as strings of a
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of symb ...
. Using some encoding, such as a
Gödel numbering In mathematical logic, a Gödel numbering is a function that assigns to each symbol and well-formed formula of some formal language a unique natural number, called its Gödel number. The concept was developed by Kurt Gödel for the proof of his ...
, the strings can be encoded as natural numbers. Thus, a decision problem informally phrased in terms of a formal language is also equivalent to a set of
natural numbers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal n ...
. To keep the formal definition simple, it is phrased in terms of subsets of the natural numbers. Formally, a decision problem is a subset of the natural numbers. The corresponding informal problem is that of deciding whether a given number is in the set. A decision problem ''A'' is called decidable or effectively solvable if ''A'' is a
recursive set In computability theory, a set of natural numbers is called computable, recursive, or decidable if there is an algorithm which takes a number as input, terminates after a finite amount of time (possibly depending on the given number) and correctly ...
and undecidable otherwise. A problem is called partially decidable, semi-decidable, solvable, or provable if ''A'' is a
recursively enumerable set In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the ...
.


Example: the halting problem in computability theory

In
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
, the
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a g ...
is a
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm wheth ...
which can be stated as follows: :Given the description of an arbitrary
program Program, programme, programmer, or programming may refer to: Business and management * Program management, the process of managing several related projects * Time management * Program, a part of planning Arts and entertainment Audio * Progra ...
and a finite input, decide whether the program finishes running or will run forever.
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
proved in 1936 that a general
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specificat ...
running on a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
that solves the halting problem for ''all'' possible program-input pairs necessarily cannot exist. Hence, the halting problem is ''undecidable'' for Turing machines.


Relationship with Gödel's incompleteness theorem

The concepts raised by Gödel's incompleteness theorems are very similar to those raised by the halting problem, and the proofs are quite similar. In fact, a weaker form of the First Incompleteness Theorem is an easy consequence of the undecidability of the halting problem. This weaker form differs from the standard statement of the incompleteness theorem by asserting that an axiomatization of the natural numbers that is both complete and
sound In physics, sound is a vibration that propagates as an acoustic wave, through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the ''reception'' of such waves and their ''perception'' by the ...
is impossible. The "sound" part is the weakening: it means that we require the axiomatic system in question to prove only ''true'' statements about natural numbers. Since soundness implies
consistency In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent ...
, this weaker form can be seen as a corollary of the strong form. It is important to observe that the statement of the standard form of Gödel's First Incompleteness Theorem is completely unconcerned with the truth value of a statement, but only concerns the issue of whether it is possible to find it through a
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proo ...
. The weaker form of the theorem can be proved from the undecidability of the halting problem as follows. Assume that we have a sound (and hence consistent) and complete axiomatization of all true
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantifie ...
statements about
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s. Then we can build an algorithm that enumerates all these statements. This means that there is an algorithm ''N''(''n'') that, given a natural number ''n'', computes a true first-order logic statement about natural numbers, and that for all true statements, there is at least one ''n'' such that ''N''(''n'') yields that statement. Now suppose we want to decide if the algorithm with representation ''a'' halts on input ''i''. We know that this statement can be expressed with a first-order logic statement, say ''H''(''a'', ''i''). Since the axiomatization is complete it follows that either there is an ''n'' such that ''N''(''n'') = ''H''(''a'', ''i'') or there is an ''n''' such that ''N''(''n''') = ¬ ''H''(''a'', ''i''). So if we
iterate Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
over all ''n'' until we either find ''H''(''a'', ''i'') or its negation, we will always halt, and furthermore, the answer it gives us will be true (by soundness). This means that this gives us an algorithm to decide the halting problem. Since we know that there cannot be such an algorithm, it follows that the assumption that there is a consistent and complete axiomatization of all true first-order logic statements about natural numbers must be false.


Examples of undecidable problems

Undecidable problems can be related to different topics, such as
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises ...
,
abstract machine An abstract machine is a computer science theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is analogous to a mathematical function in that it receives inputs and produces outputs based on pr ...
s or
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
. Since there are
uncountably In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many Element (mathematics), elements to be countable set, countable. The uncountability of a set is closely related to its cardinal number: a se ...
many undecidable problems, any list, even one of infinite length, is necessarily incomplete.


Examples of undecidable statements

There are two distinct senses of the word "undecidable" in contemporary use. The first of these is the sense used in relation to Gödel's theorems, that of a statement being neither provable nor refutable in a specified
deductive system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A for ...
. The second sense is used in relation to
computability theory Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since e ...
and applies not to statements but to
decision problem In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm wheth ...
s, which are countably infinite sets of questions each requiring a yes or no answer. Such a problem is said to be undecidable if there is no
computable function Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do ...
that correctly answers every question in the problem set. The connection between these two is that if a decision problem is undecidable (in the recursion theoretical sense) then there is no consistent, effective
formal system A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A form ...
which proves for every question ''A'' in the problem either "the answer to ''A'' is yes" or "the answer to ''A'' is no". Because of the two meanings of the word undecidable, the term
independent Independent or Independents may refer to: Arts, entertainment, and media Artist groups * Independents (artist group), a group of modernist painters based in the New Hope, Pennsylvania, area of the United States during the early 1930s * Independ ...
is sometimes used instead of undecidable for the "neither provable nor refutable" sense. The usage of "independent" is also ambiguous, however. It can mean just "not provable", leaving open whether an independent statement might be refuted. Undecidability of a statement in a particular deductive system does not, in and of itself, address the question of whether the
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (''true'' or '' false''). Computing In some progr ...
of the statement is well-defined, or whether it can be determined by other means. Undecidability only implies that the particular deductive system being considered does not prove the truth or falsity of the statement. Whether there exist so-called "absolutely undecidable" statements, whose truth value can never be known or is ill-specified, is a controversial point among various philosophical schools. One of the first problems suspected to be undecidable, in the second sense of the term, was the
word problem for groups In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group ''G'' is the algorithmic problem of deciding whether two words in the generators represent the same el ...
, first posed by
Max Dehn Max Wilhelm Dehn (November 13, 1878 – June 27, 1952) was a German mathematician most famous for his work in geometry, topology and geometric group theory. Born to a Jewish family in Germany, Dehn's early life and career took place in Germany. ...
in 1911, which asks if there is a finitely presented
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
for which no algorithm exists to determine whether two words are equivalent. This was shown to be the case in 1952. The combined work of Gödel and
Paul Cohen Paul Joseph Cohen (April 2, 1934 – March 23, 2007) was an American mathematician. He is best known for his proofs that the continuum hypothesis and the axiom of choice are independent from Zermelo–Fraenkel set theory, for which he was award ...
has given two concrete examples of undecidable statements (in the first sense of the term): The
continuum hypothesis In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states that or equivalently, that In Zermelo–Fraenkel set theory with the axiom of choice (ZFC), this is equivalent to ...
can neither be proved nor refuted in ZFC (the standard axiomatization of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
), and the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
can neither be proved nor refuted in ZF (which is all the ZFC axioms ''except'' the axiom of choice). These results do not require the incompleteness theorem. Gödel proved in 1940 that neither of these statements could be disproved in ZF or ZFC set theory. In the 1960s, Cohen proved that neither is provable from ZF, and the continuum hypothesis cannot be proven from ZFC. In 1970, Russian mathematician
Yuri Matiyasevich Yuri Vladimirovich Matiyasevich, (russian: Ю́рий Влади́мирович Матиясе́вич; born 2 March 1947 in Leningrad) is a Russian mathematician and computer scientist. He is best known for his negative solution of Hilbert's ...
showed that
Hilbert's Tenth Problem Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation (a polynomial equa ...
, posed in 1900 as a challenge to the next century of mathematicians, cannot be solved. Hilbert's challenge sought an algorithm which finds all solutions of a Diophantine equation. A Diophantine equation is a more general case of
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been k ...
; we seek the integer roots of a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
in any number of variables with integer coefficients. Since we have only one equation but ''n'' variables, infinitely many solutions exist (and are easy to find) in the
complex plane In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the -axis, called the real axis, is formed by the real numbers, and the -axis, called the imaginary axis, is formed by the ...
; however, the problem becomes impossible if solutions are constrained to integer values only. Matiyasevich showed this problem to be unsolvable by mapping a Diophantine equation to a
recursively enumerable set In computability theory, a set ''S'' of natural numbers is called computably enumerable (c.e.), recursively enumerable (r.e.), semidecidable, partially decidable, listable, provable or Turing-recognizable if: *There is an algorithm such that the ...
and invoking Gödel's Incompleteness Theorem. In 1936,
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical com ...
proved that the
halting problem In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a g ...
—the question of whether or not a
Turing machine A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algori ...
halts on a given program—is undecidable, in the second sense of the term. This result was later generalized by
Rice's theorem In computability theory, Rice's theorem states that all non-trivial semantic properties of programs are undecidable. A semantic property is one about the program's behavior (for instance, does the program terminate for all inputs), unlike a synta ...
. In 1973,
Saharon Shelah Saharon Shelah ( he, שהרן שלח; born July 3, 1945) is an Israeli mathematician. He is a professor of mathematics at the Hebrew University of Jerusalem and Rutgers University in New Jersey. Biography Shelah was born in Jerusalem on July 3, ...
showed the
Whitehead problem In group theory, a branch of abstract algebra, the Whitehead problem is the following question: Saharon Shelah proved that Whitehead's problem is independent of ZFC, the standard axioms of set theory. Refinement Assume that ''A'' is an abel ...
in
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
is undecidable, in the first sense of the term, in standard set theory. In 1977, Paris and Harrington proved that the Paris-Harrington principle, a version of the Ramsey theorem, is undecidable in the axiomatization of arithmetic given by the
Peano axioms In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly ...
but can be proven to be true in the larger system of
second-order arithmetic In mathematical logic, second-order arithmetic is a collection of axiomatic systems that formalize the natural numbers and their subsets. It is an alternative to axiomatic set theory as a foundation for much, but not all, of mathematics. A precurs ...
.
Kruskal's tree theorem In mathematics, Kruskal's tree theorem states that the set of finite trees over a well-quasi-ordered set of labels is itself well-quasi-ordered under homeomorphic embedding. History The theorem was conjectured by Andrew Vázsonyi and proved b ...
, which has applications in computer science, is also undecidable from the Peano axioms but provable in set theory. In fact Kruskal's tree theorem (or its finite form) is undecidable in a much stronger system codifying the principles acceptable on basis of a philosophy of mathematics called predicativism.
Goodstein's theorem In mathematical logic, Goodstein's theorem is a statement about the natural numbers, proved by Reuben Goodstein in 1944, which states that every ''Goodstein sequence'' eventually terminates at 0. Kirby and Paris showed that it is unprovable in Pe ...
is a statement about the
Ramsey theory Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask a ...
of the natural numbers that Kirby and Paris showed is undecidable in Peano arithmetic.
Gregory Chaitin Gregory John Chaitin ( ; born 25 June 1947) is an Argentine-American mathematician and computer scientist. Beginning in the late 1960s, Chaitin made contributions to algorithmic information theory and metamathematics, in particular a computer-t ...
produced undecidable statements in
algorithmic information theory Algorithmic information theory (AIT) is a branch of theoretical computer science that concerns itself with the relationship between computation and information of computably generated objects (as opposed to stochastically generated), such as str ...
and proved another incompleteness theorem in that setting. Chaitin's theorem states that for any theory that can represent enough arithmetic, there is an upper bound ''c'' such that no specific number can be proven in that theory to have
Kolmogorov complexity In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program (in a predetermined programming language) that produ ...
greater than ''c''. While Gödel's theorem is related to the
liar paradox In philosophy and logic, the classical liar paradox or liar's paradox or antinomy of the liar is the statement of a liar that they are lying: for instance, declaring that "I am lying". If the liar is indeed lying, then the liar is telling the truth ...
, Chaitin's result is related to
Berry's paradox The Berry paradox is a self-referential paradox arising from an expression like "The smallest positive integer not definable in under sixty letters" (a phrase with fifty-seven letters). Bertrand Russell, the first to discuss the paradox in print, ...
. In 2007, researchers Kurtz and Simon, building on earlier work by
J.H. Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
in the 1970s, proved that a natural generalization of the
Collatz problem The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns integer sequence, seq ...
is undecidable.Kurtz, Stuart A.; Simon, Janos
"The Undecidability of the Generalized Collatz Problem"
in Proceedings of the 4th International Conference on Theory and Applications of Models of Computation, TAMC 2007, held in Shanghai, China in May 2007. .


See also

*
Decidability (logic) In logic, a true/false decision problem is decidable if there exists an effective method for deriving the correct answer. Zeroth-order logic (propositional logic) is decidable, whereas first-order and higher-order logic are not. Logical systems ar ...
*
Entscheidungsproblem In mathematics and computer science, the ' (, ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. The problem asks for an algorithm that considers, as input, a statement and answers "Yes" or "No" according to whether the state ...
*
Proof of impossibility In mathematics, a proof of impossibility is a proof that demonstrates that a particular problem cannot be solved as described in the claim, or that a particular set of problems cannot be solved in general. Such a case is also known as a negative ...
*
Wicked problem In planning and policy, a wicked problem is a problem that is difficult or impossible to solve because of incomplete, contradictory, and changing requirements that are often difficult to recognize. It refers to an idea or problem that cannot be fi ...


References

{{Mathematical logic Computability theory Logic in computer science